Labeling of Carbon Pools in Bradyrhizobium japonicum and Rhizobium leguminosarum bv viciae Bacteroids following Incubation of Intact Nodules with CO(2).
نویسندگان
چکیده
The aim of the work reported here was to ascertain that the patterns of labeling seen in isolated bacteroids also occurred in bacteroids in intact nodules and to observe early metabolic events following exposure of intact nodules to (14)CO(2). Intact nodules of soybean (Glycine max L. Merr. cv Ripley) inoculated with Bradyrhizobium japonicum USDA 110 and pea (Pisum sativum L. cv Progress 9) inoculated with Rhizobium leguminosarum bv viciae isolate 128C53 were detached and immediately fed (14)CO(2) for 1 to 6 min. Bacteroids were purified from these nodules in 5 to 7 min after the feeding period. In the cytosol from both soybean and pea nodules, malate had the highest radioactivity, followed by citrate and aspartate. In peas, asparagine labeling equaled that of aspartate. In B. japonicum bacteroids, malate was the most rapidly labeled compound, and the rate of glutamate labeling was 67% of the rate of malate labeling. Aspartate and alanine were the next most rapidly labeled compounds. R. leguminosarum bacteroids had very low amounts of (14)C and, after a 1-min feeding, malate contained 90% of the radioactivity in the organic acid fraction. Only a trace of activity was found in aspartate, whereas the rate of glutamate and alanine labeling approached that of malate after 6 min of feeding. Under the conditions studied, malate was the major form of labeled carbon supplied to both types of bacteroids. These results with intact nodules confirm our earlier results with isolated bacteroids, which showed that a significant proportion of provided labeled substrate, such as malate, is diverted to glutamate. This supports the conclusion that microaerobic conditions in nodules influence carbon metabolism in bacteroids.
منابع مشابه
Sugar-binding activity of pea lectin enhances heterologous infection of transgenic alfalfa plants by Rhizobium leguminosarum biovar viciae.
Transgenic alfalfa (Medicago sativa L. cv Regen) roots carrying genes encoding soybean lectin or pea (Pisum sativum) seed lectin (PSL) were inoculated with Bradyrhizobium japonicum or Rhizobium leguminosarum bv viciae, respectively, and their responses were compared with those of comparably inoculated control plants. We found that nodule-like structures formed on alfalfa roots only when the rhi...
متن کاملRole of polyhydroxybutyrate and glycogen as carbon storage compounds in pea and bean bacteroids.
Rhizobium leguminosarum synthesizes polyhydroxybutyrate and glycogen as its main carbon storage compounds. To examine the role of these compounds in bacteroid development and in symbiotic efficiency, single and double mutants of R. leguminosarum bv. viciae were made which lack polyhydroxybutyrate synthase (phaC), glycogen synthase (glgA), or both. For comparison, a single phaC mutant also was i...
متن کاملBacA is essential for bacteroid development in nodules of galegoid, but not phaseoloid, legumes.
BacA is an integral membrane protein, the mutation of which leads to increased resistance to the antimicrobial peptides bleomycin and Bac7(1-35) and a greater sensitivity to SDS and vancomycin in Rhizobium leguminosarum bv. viciae, R. leguminosarum bv. phaseoli, and Rhizobium etli. The growth of Rhizobium strains on dicarboxylates as a sole carbon source was impaired in bacA mutants but was ove...
متن کاملTranscriptomic analysis of Rhizobium leguminosarum biovar viciae in symbiosis with host plants Pisum sativum and Vicia cracca.
Rhizobium leguminosarum bv. viciae forms nitrogen-fixing nodules on several legumes, including pea (Pisum sativum) and vetch (Vicia cracca), and has been widely used as a model to study nodule biochemistry. To understand the complex biochemical and developmental changes undergone by R. leguminosarum bv. viciae during bacteroid development, microarray experiments were first performed with cultur...
متن کاملDraft genome of the strain RCAM1026 Rhizobium leguminosarum bv. viciae
Rhizobium leguminosarum bv. viciae RCAM1026 is a strain first isolated in 1964 from nodules of "Ramensky 77" cultivar of garden pea (Pisum sativum L.) now routinely used as a model strain in inoculation experiments on pea. Assembly with SPAdes yielded 133 contigs longer then 200 bp (N50 = 202,321, GC% = 60.84). Resulting annotated genome is 7,248,686 bp encoding 6792 genes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 100 2 شماره
صفحات -
تاریخ انتشار 1992